Recovery can be Simple: Asynchronous

Logging for Distributed Transactions
Sky Summer Retreat — 2024

Soujanya Ponnapalli
Mentor: Jonathan Goldstein

=" Microsoft




Applications and Distributed Transactions

“
CHASE ¢ N 0 . ,
MySaL '@ Q *4 SQLite
MariaDB MongoDB. Cockroach Labs

-~
//// '
é MySQL PostgreSQL MariaDB MongoDB SQLite CockroachDB

BANK OF AMERICA

T & Pay . -
CI tl ba n k é redis .g. :,ﬂeoq-j \a - érienTDB' '/"%

CouchDB cassandra
WELLS 0 Redis CouchDB Neo4| FirebirdSQL OrientDB Cassandra
FARGO
g.‘ . $ touch sky-summer-retreat.txt
’z & $ mv sky-summer-retreat.txt sky-summer-retreat-24.txt
@

s 1l




istributed Tra

nsactions

nroughput ar

d poor sca

ave low
ability!



Back to Fundamentals: Distributed Transactions

In the context of databases

(“T")  Transaction

o m_



Back to Fundamentals: Distributed Transactions

In the context of databases

£ N ;

For atomicity, databases rely on distributed commit protocols




Back to Fundamentals: Distributed Transactions

Two Phase Commit

(“T")  Transaction

o m_



Back to Fundamentals: Distributed Transactions

Two Phase Commit — Phase | (PREPARE)

|
i
% Tra nsaction% i wﬁ ﬁwk ﬁ@




Back to Fundamentals: Distributed Transactions

Two Phase Commit — Phase || (COMMIT)

Done

|
i
?séai | TTansactknwti E;;§f$ %t§;g§;;§7$ %Q§Zé2

To provide fault-tolerant ACID transactions, databases use logs!




Back to Fundamentals: Distributed Transactions

Two Phase Commit — Phase Il (COMMIT)

(“T")  Transaction

o m_




Back to Fundamentals: Distributed Transactions

Two Phase Commit — Phase Il (COMMIT)

(T Transaction

Done

10



Updating Recovery Logs in the Critical Path!

Transaction Commit Path:
1. Coordinator writes to its Recovery Log before sending commit msgs
2. Servers write to their Recovery Logs before acknowledging commit msgs
3. Primary notifies the client

Transaction throughput is limited by the I/O throughput at the servers!

Highly-contented transactions stall for I/O to complete and scale poorly!

11



Logging Limits Performance — Why Bother? &

Two-orders of performance difference between storage and network

Networks got faster!
* Accelerated networking with low-latency NICs
* General-purpose datacenter networks like eRPC
e ~100x higher throughput than gRPC

For two servers in the same datacenter at Azure
e eRPC could handle about 2.6 Mops/s
* Whereas network-replicated disks could support 30 Kops/s

12



Mitigating |/O Bottlenecks: Early Lock Release

IMPLEMENTATION TECHNIQUES FOR MAIN MEMORY DATABASE SYSTEMS

David J. Dewqc‘, Randy H. Katz?, Fragk Olken®,
Leonard D. Shapiro”, Michael R. Stonebraker®, David Wood?

1

2Comput.el' Sciences Department, University of Wisconsin

ECS Department, University of California at Berkeley
4 CSAM Department, Lawrence Berkeley Laboratory
Department of Computer Science, North Dakota State University

This research was partially supported by the National Science Foundation under
grants MCS82-01360, MCS82-01870, by the Department of Energy under contracts
#DE-AC02-81ER 10920, #DE-ACG3-765F00008, # W-740-ENG-48, and by the Air
Force Office of Scientific Research under Grant 83-0021.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-128-8/84/006/0001 $00.75

Partial Strictness in Two-Phase Locking

Eljas Soisalon-Soininen and Tatu Yl6nen

Department of Computer Science, Helsinki University of Technology
Otakaari 1, FIN-02150 Espoo, Finland
e-mail: ess@cs.hut.fi, ylo@cs.hut.fi
telefax: +358-0-451 3293, tel: +358-0-4511

Abstract. Two-phase locking is a standard method for managing con-
current transactions in database systems. In order to guarantee good re-
covery properties, two-phase locking should be strict, meaning that locks
can be released only after the transaction’s commit or abort. In this paper
we show that even exclusive locks can be released immediately after the
commit request has arrived, without sacrificing any important recovery
properties. This optimization is especially useful if the commit operation
takes much time compared with the other actions, as for main-memory
databases, or if the commits are performed in batches.

13



Mitigating |/O Bottlenecks: Early Lock Release

Limited wide-adoption of ELR and asynchronous logging
* [n-consistent in-memory state
e Crash recovery and consistency

14



An active tradeoff between
achieving high performance and
Keeping recovery simplel




Simple ldea: Asynchronous Logging

(“T")  Transaction

o m_




Simple ldea: Asynchronous Logging

(“T")  Transaction

eDone




Simple Recovery: Fundamental Challenge

lil | Transaction

18



Simple Recovery: Fundamental Challenge

lil | Transaction




Simple Recovery: Fundamental Challenge

lil | Transaction

20



Recovery Becomes Complicated!

Needs tracking distributed dependencies across Recovery Logs

Too many possible states to potentially recover from

21



Cascades: Recovery Can Be Simple!

* Persistence vs Durability

* Persistence ¥
e Commit record is flushed to disk

* Durability I¥X

 Commit record and all its dependencies are persisted

Commit record is durable when it and its dependencies are persisted

22



Insight: Speculate on Durability of Commit Records

(“T")  Transaction

23



Insight: Speculate on Durability of Commit Records

(“T")  Transaction

New-Txn

24



Insight: Replicate Durable Records Asynchronously

|

|

|

|
e '
g
, |
(T Transaction |
|

|

|

25



Insight: Replicate Durable Records Asynchronously

(“T")  Transaction

o m_

Commit T1 Commit T1

26



Insight: Replicate Durable Records Asynchronously

(“T")  Transaction

a .

Commit T1

o m_

27



Insight: Replicate Durable Records Asynchronously

(“T")  Transaction

a\ .

o m_

28



Insight: Use Cascade’s Replicas for Simplifying Recovery

(“T")  Transaction

o m_

Commit T1 Commit T1 Commit T1

29




Insight: Use Cascade’s Replicas for Simplifying Recovery

(“T")  Transaction

o m_

Commit T1 Commit T1 Commit T1

30




Insight: Use Cascade’s Replicas for Simplifying Recovery

(“T")  Transaction

o m_

Commit T1 Commit T1

31




Cascades: High Throughput and Simple Recovery

* Provides the same consistency guarantees to the client
* Delays notification until durability

* Cascades simultaneously achieves
* High-throughput
e With asynchronous logging
e Without trading off simplicity of recovery

32



Cascades: Performance Preview

Builds atop Lattice™®, an asynchronous logging framework from MSR
*Jose Faleiro, Jonathan Goldstein, Phil Bernstein from MSR Redmond

For highly-conflicted transactions and relative to synchronous logging on
nﬁtworhk—replicated oremium-SSDs for logging, Cascades provides 160x higher
througnput

Instead with high-speed ultra-SSDs (4x faster than premium-SSDs), Cascades
provides 35x higher throughput

Find me at the poster session! soujanya@berkeley.edu

33


mailto:soujanya@berkeley.edu

