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Back to Fundamentals: Distributed Transactions

In the context of databases
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Back to Fundamentals: Distributed Transactions

In the context of databases
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For atomicity, databases rely on distributed commit protocols




Back to Fundamentals: Distributed Transactions

Two Phase Commit
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Back to Fundamentals: Distributed Transactions

Two Phase Commit — Phase || (COMMIT)
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To provide fault-tolerant ACID transactions, databases use logs!




Back to Fundamentals: Distributed Transactions

Two Phase Commit — Phase Il (COMMIT)
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Back to Fundamentals: Distributed Transactions
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Updating Recovery Logs in the Critical Path!

Transaction Commit Path:
1. Coordinator writes to its Recovery Log before sending commit msgs
2. Servers write to their Recovery Logs before acknowledging commit msgs
3. Primary notifies the client

Transaction throughput is limited by the I/O throughput at the servers!

Highly-contented transactions stall for I/O to complete and scale poorly!
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Logging Limits Performance — Why Bother? &

Two-orders of performance difference between storage and network

Networks got faster!
* Accelerated networking with low-latency NICs
* General-purpose datacenter networks like eRPC
e ~100x higher throughput than gRPC

For two servers in the same datacenter at Azure
e eRPC could handle about 2.6 Mops/s
* Whereas network-replicated disks could support 30 Kops/s
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Mitigating |/O Bottlenecks: Early Lock Release

IMPLEMENTATION TECHNIQUES FOR MAIN MEMORY DATABASE SYSTEMS
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Partial Strictness in Two-Phase Locking
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Abstract. Two-phase locking is a standard method for managing con-
current transactions in database systems. In order to guarantee good re-
covery properties, two-phase locking should be strict, meaning that locks
can be released only after the transaction’s commit or abort. In this paper
we show that even exclusive locks can be released immediately after the
commit request has arrived, without sacrificing any important recovery
properties. This optimization is especially useful if the commit operation
takes much time compared with the other actions, as for main-memory
databases, or if the commits are performed in batches.
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Mitigating |/O Bottlenecks: Early Lock Release

Limited wide-adoption of ELR and asynchronous logging
* [n-consistent in-memory state
e Crash recovery and consistency
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An active tradeoff between
achieving high performance and
Keeping recovery simplel




Simple ldea: Asynchronous Logging

(“T")  Transaction

o m_




Simple ldea: Asynchronous Logging

(“T")  Transaction

eDone




Simple Recovery: Fundamental Challenge

lil | Transaction
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Recovery Becomes Complicated!

Needs tracking distributed dependencies across Recovery Logs

Too many possible states to potentially recover from
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Cascades: Recovery Can Be Simple!

* Persistence vs Durability

* Persistence ¥
e Commit record is flushed to disk

* Durability I¥X

 Commit record and all its dependencies are persisted

Commit record is durable when it and its dependencies are persisted
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Insight: Speculate on Durability of Commit Records
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Insight: Speculate on Durability of Commit Records
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Insight: Replicate Durable Records Asynchronously

|

|

|

|
e '
g
, |
(T Transaction |
|

|

|

25



Insight: Replicate Durable Records Asynchronously
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Insight: Replicate Durable Records Asynchronously
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Insight: Use Cascade’s Replicas for Simplifying Recovery
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Insight: Use Cascade’s Replicas for Simplifying Recovery
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Cascades: High Throughput and Simple Recovery

* Provides the same consistency guarantees to the client
* Delays notification until durability

* Cascades simultaneously achieves
* High-throughput
e With asynchronous logging
e Without trading off simplicity of recovery
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Cascades: Performance Preview

Builds atop Lattice™®, an asynchronous logging framework from MSR
*Jose Faleiro, Jonathan Goldstein, Phil Bernstein from MSR Redmond

For highly-conflicted transactions and relative to synchronous logging on
nﬁtworhk—replicated oremium-SSDs for logging, Cascades provides 160x higher
througnput

Instead with high-speed ultra-SSDs (4x faster than premium-SSDs), Cascades
provides 35x higher throughput

Find me at the poster session! soujanya@berkeley.edu
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